9.1 - Representing Inequalities

A \qquad compares linear expressions that may not be equal.
$\mathbf{x} \geq \mathbf{- 3}$ means that \mathbf{x} is greater than or equal to - $\mathbf{3}$
Inequalities can be expressed verbally, graphically, and algebraically.

Inequality	Meaning
$\boldsymbol{a}>\boldsymbol{b}$	\boldsymbol{a} is greater than \boldsymbol{b}
$\boldsymbol{a}<\boldsymbol{b}$	\boldsymbol{a} is less than \boldsymbol{b}
$\mathbf{a} \geq \mathbf{b}$	\boldsymbol{a} is greater than or equal to \mathbf{b}
$\mathbf{a} \leq \boldsymbol{b}$	\boldsymbol{a} is less than or equal to \boldsymbol{b}
$\boldsymbol{a} \neq \mathbf{b}$	\boldsymbol{a} is not equal to \mathbf{b}

Example 1: The Queen City Exhibition has height requirements for certain rides. To go on one ride, the Mega Drop, riders must be at least 54 " tall.

- Graphically: Use a number line to graph the allowable heights. Choose a scale that is convenient with the range of values you have chosen. Mark the minimum allowable height on the line - this is called a boundary point.
 are all solutions Let $x=$ person's height in inches

It depends on student what scale they want to use as pong as it makes sense sen

- Verbally:

 $x \geq 54^{\prime \prime}$ (x is greater than or equalscale: goes up by 1
each time. Rider's must be greater than or equal to 54 inches to ride the Mega Drop. A boundary point separates the values less than from the values greater than a specified value. It may or may not be a possible value.

Example 2: Represent each of the following algebraically and verbally.
a)

Algebraically:
$x \leq-1.5$

Verbally: x is less than or equal to -1.5

Algebraically: $x>5.25$

Verbally: x is greater than 5.25

Example 3:
a) Express the inequality shown on the number line verbally and algebraically.

b) Express the inequality shown on the number line algebraically.

$$
x<2.9
$$

c) Express the inequality $x \geq-4 / 7$ verbally: x is greater than or equal to $-\frac{4}{7}$
d) Express the inequality $35<n$ graphically 35 is less than n

Representing Double Inequalities
Example 4: The Kiddie Swing at the QCX has the following height requirement: minimum $32^{\prime \prime}$ and maximum 42". Represent the situation with an inequality. Show it verbally, graphically, and algebraically.
verbally: the height requirement is greater than or equal to $32^{\prime \prime}$ and less than Algebraically: $x \geq 32^{\prime \prime}$ and $x \leq 42^{\prime \prime}$ or $32 \leq x \leq 42^{\prime \prime}$ or equal to $42^{\prime \prime}$

Assignment: Pages 347-349 \#s 5, 7, 9, 11, 13, 15, 17, 19, 23

