<u>9.1 – Representing</u>	<u>g Inequalities</u>
A Lincar	<u>inequality</u> compares linear expressions that may not be equal.
x≥-3 means	that x is greater than or equal to -3
Inequalities can be	expressed verbally, graphically, and algebraically.
Inequality	Meaning
a>b	a is greater than b
a <b< th=""><th>a is less than b</th></b<>	a is less than b
a≥b	a is greater than or equal to b
a≤b	a is less than or equal to b
a≠b	a is not equal to b

Example 1: The Queen City Exhibition has height requirements for certain rides. To go on one ride, the Mega Drop, riders must be at least 54" tall.

• **Graphically**: Use a number line to graph the allowable heights. Choose a scale that is convenient with the range of values you have chosen. Mark the minimum allowable height on the line – this is called a <u>boundary point</u>.

Rider's must be greater than or equal to 54 inches to ride the Mega Drop.

A <u>boundary</u> <u>point</u> separates the values less than from the values greater than a specified value. It may or may not be a possible value.

Example 2: Represent each of the following algebraically and verbally.

Example 3:

a) Express the inequality shown on the number line verbally and algebraically.

b) Express the inequality shown on the number line algebraically.

Representing Double Inequalities

Example 4: The Kiddie Swing at the QCX has the following height requirement: minimum 32" and maximum 42". Represent the situation with an inequality. Show it verbally, graphically, and algebraically.

Verbally: Hhe Algebraically:	height $x \ge 3$	regy ,2"	live me and	nt is 2 X	s great 42'	erthc 1 o	in or r	еди 32 :	al to $\leq X$:	- 32" - 42	and "	100 eg -10 42	than Inal
Graphically: 🕂		+ * 32	33	34	35	36	37	38	39	40	41	42 42	,
Assignment: Pages 347-349 #s 5, 7, 9, 11, 13, 15, 17, 19, 23													